

greenitaly

PALAVERDI / FIERA DI PARMA

VENERDÌ 17 OTTOBRE 2025 / 10.00 - 12.30 SALA QUERCIA

IL DRENAGGIO URBANO SOSTENIBILE PER LA REGOLAMENTAZIONE DELLE ACQUE METEORICHE

Alessandro Balbo

Ingegnere Idraulico, direttore tecnico di Wise Engineering

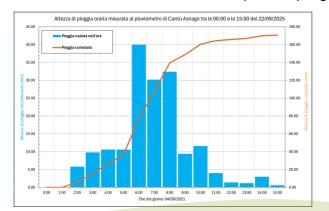
Con il patrocinio di

Media partner

COSA STA SUCCEDENDO?

Il mese scorso.....

Lunedì 22 settembre un'intensa ondata di maltempo ha colpito un'ampia fascia di territorio, dal Lario a Milano, causando esondazioni e danni rilevanti. Tra i comuni più colpiti: Argegno, Blevio, Como, Cantù, Cabiate, Meda e Milano.


Analizzando i dati del pluviometro ARPA di Cantù Asnago (CO), nel bacino del torrente Seveso si vede che sono caduti:

160 mm di pioggia in 9 ore

170 mm in poco più di 12 ore

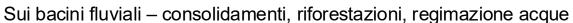
L'evento di pioggia misurato dallo strumento installato a Cantù Asnago risulta associabile a tempi di ritorno di oltre 100 anni per durate comprese tra 3 e 12 ore, con oltre 200 anni per le durate tra 6 e 10 ore.

Anche le reti di drenaggio sono state fortemente sollecitate, con tempi di ritorno compresi tra 5 e 25 anni per le basse durate, sufficienti per mandare in crisi collettori dimensionati secondo l'usuale pratica progettuale.

Cantù (CO)

Meda (MB)

Milano


COME ELIMINARE riduvie IL RISCHIO DI ALLUVIONI E ALLAGAMENTI URBANI?

IL RISCHIO DA ALLUVIONI NON E' ELIMINABILE MA SI PUO' E SI DEVE RIDURRE DIMINUENDO PERICOLOSITÀ (PROBABILITÀ E INTENSITÀ DI UN EVENTO), VULNERABILITÀ (PREDISPOSIZIONE A SUBIRE DANNI DI CIÒ CHE È ESPOSTO) ED ESPOSIZIONE (PRESENZA E VALORE DI PERSONE E BENI)

Sui fiumi – Vasche di laminazione e adeguamenti di alvei

INTERVENTI CONCENTRATI

Interventi diffusi

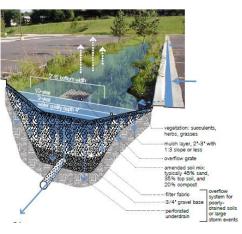
Sulle reti fognarie - Adeguamenti reti e vasche volano

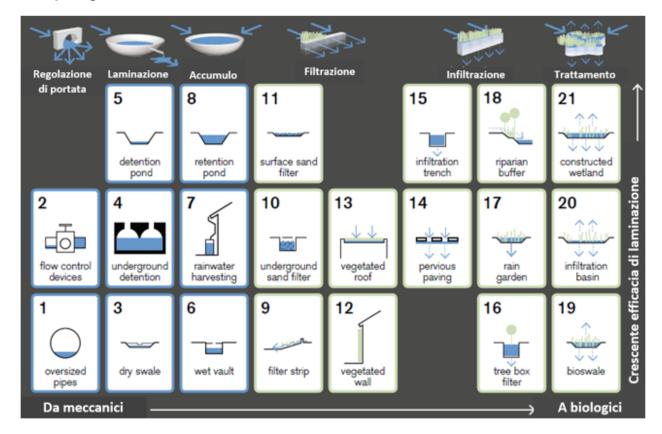
QUALI STRATEGIE UTILIZZARE NELLA GESTIONE DELLE ACQUE IN CITTA'?

PROMUOVERE UNA TRANSIZIONE DA «CITTA' VASCA».....A CITTA' SPUGNA

PROMUOVERE UNA TRANSIZIONE DA CITTA' ALLAGATA E IMPERMEABILE A CITTA' ALLAGABILE E PERMEABILE

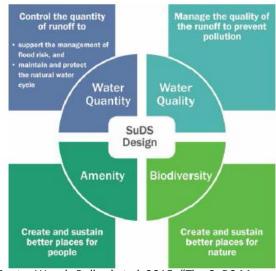
Oggi le reti fognarie in ambito urbano riescono a gestire portate generalmente associati a tempo di ritorno 2-5 anni. Per eventi con tempo di ritorno superiore le acque meteoriche non entrano in rete o esondano in città in maniera incontrollata facendo si che sia la città stessa a svolgere una funzione di «vasca di laminazione», nella quale vengono allagate indistintamente aree a domanda di sicurezza alta e bassa.


Occorre ripensare le città perché mantengano, e anzi incrementino, la loro funzione di polmone nella gestione delle proprie acque meteoriche, ma destinino a questa funzione aree a bassa domanda di sicurezza, in grado di svolgere, oltre alla funzione di laminazione, altre funzioni e consentano di raggiungere oltre all'obiettivo di riduzione del rischio idraulico anche un miglioramento della qualità di vita.



QUALI STRUMENTI IMPIEGARE?

IL DRENAGGIO URBANO SOSTENIBILE (SUDS) rappresenta una risposta al cambiamento climatico e una strategia di gestione delle acque in ambito urbano multi-obiettivo, integrabile con interventi più gray e tradizionali per mitigare i rischi di allagamento urbani provenienti da acque meteoriche


Possibili tipologie di intervento

Prospetto riassuntivo delle tecniche utilizzabili (hard e soft engineering) per il controllo del drenaggio e la laminazione dei volumi e delle portate [fonte: Huber, J., 2010. LID - Low Impact Development: a Design Manual for Urban Areas]

Alessandro Balbo

OBIETTIVI DA PERSEGUIRE

Fonte: Woods Ballard et al. 2015. "The SuDS Manual"

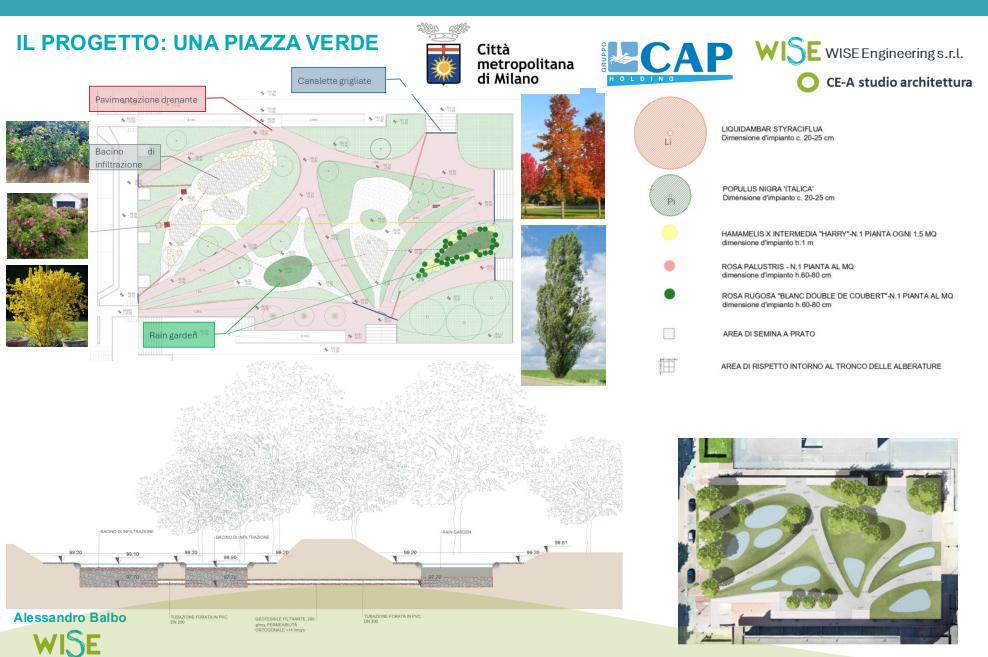
NEL PROGETTARE DOBBIAMO TENERE CONTO CHE:

- LE CITTÀ ESISTONO GIÀ, le dobbiamo ripensare, migliorare, ma dobbiamo garantire le funzioni che svolgono, e dobbiamo pensare a una GESTIONE DELLE ACQUE METEORICHE CHE SIA «SU MISURA» Serve una STRATEGIA PIANIFICATORIA E PROGETTUALE per definire la localizzazione degli interventi e la tipologia in risposta a esigenze specifiche del contesto
- Dobbiamo progettare soluzioni idraulicamente e ambientalmente efficaci, misurabili, multiscopo, che salvaguardino le esigenze di funzionalità esistenti delle aree
- Una soluzione che non da risposta efficace, anche parziale, al problema idraulico non è un SUDS
- Ogni goccia d'acqua sottratta alla rete fognaria e gestita in loco concorre al raggiungimento del risultato finale, ma serve analisi costi-benefici

ALLEGGERIMENTO VIA DI VITTORIO, OPERA (MI)

CE-A studio architettura

STATO DI FATTO



ALCUNI ESEMPI....ALLEGGERIMENTO VIA DI VITTORIO, OPERA (MI)

Area rigenerata: 6460 m² di cui:

- verde: 1950 m²

- superfice drenata: 4510 m²

Numero nuove piante:

Risparmio energetico previsto: 0.097 TEP

Costo dell'opera oneri inclusi: 558 653.98 €

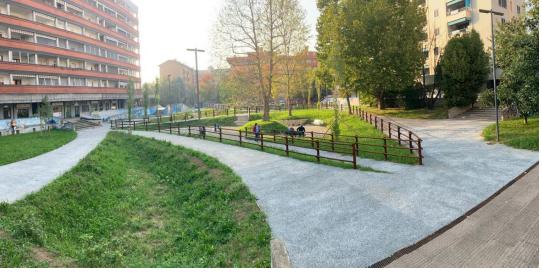
PORTATA SCARICATA IN FOGNATURA NULLA PER EVENTO CON 100 ANNI DI TEMPO DI RITORNO

ALLEGGERIMENTO VIA DI VITTORIO, OPERA (MI)

PRIMA.....

ALLEGGERIMENTO VIA DI VITTORIO, OPERA (MI)

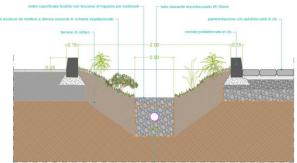
L'OPERA REALIZZATA



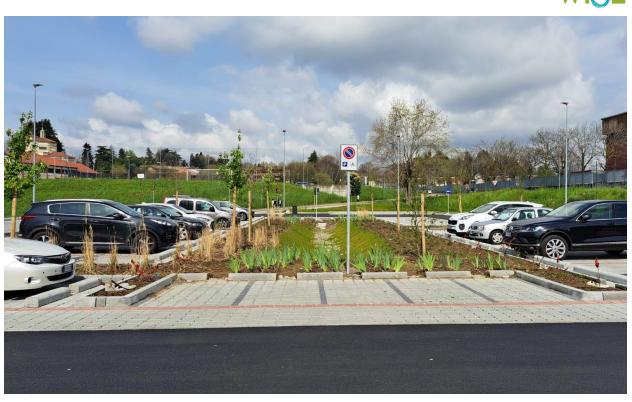
CE-A studio architettura



STATO DI FATTO



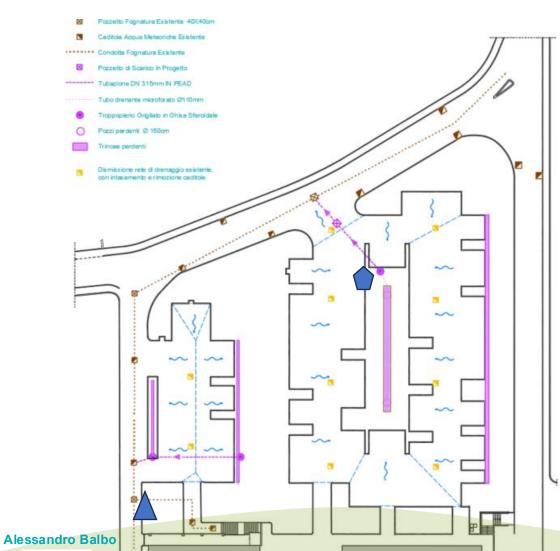
Comune di Cucciago



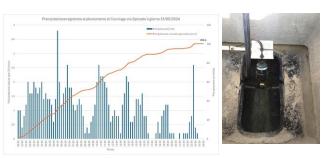
PRIMA.....

DOPO.....

L'OPERA REALIZZATA



IL MONITORAGGIO DELLE PIOGGE E DELLE PORTATE



Stazione termo-pluviometrica con datalogger equipaggiata con Pluviometro igrometro, anemometro e misura della temperatura

Misuratore di portata composto da trasduttore di livello a microonde radar, trasduttore di velocità superficiale a microonde radar ad effetto doppler

Tutti i segnali sono inviati tramite cavo a PC e datalogger locale all'interno dell'ufficio tecnico comunale,

DE-IMPEREMABILIZZAZIONE E RIGENERAZIONE URBANA A MEDA (MB)

DATI DI PROGETTO:

Superficie totale drenata: 1,1 ha

Tipologia NBS: disconnessione da rete meteorica

> area bioritenzione in parcheggio bacino di detenzione vegetato

fosso filtrante

50 anni (verifica per 100 anni) Tempo di ritorno:

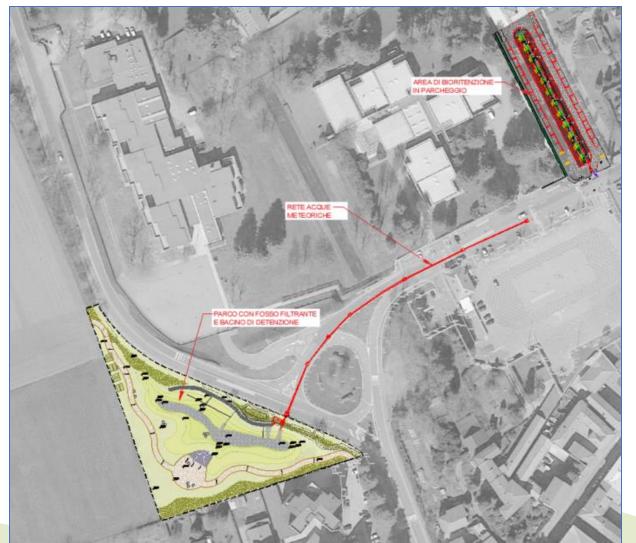
Superfici NBS: area bioritenzione in parcheggio = 2'142 mq

bacino di detenzione e parco = 6'130 mq

108 Nuove alberature:

Acqua di P.P. intercettata: 100,8 mm

Costo dell'opera: 515'085€



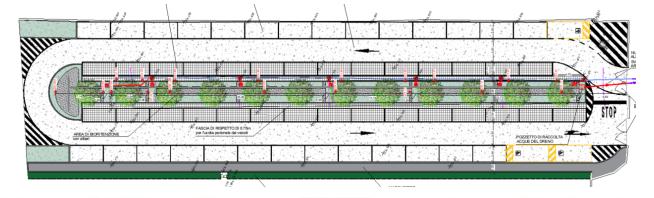
DE-IMPERMABILIZZAZIONE E RIGENERAZIONE URBANA A MEDA (MB)

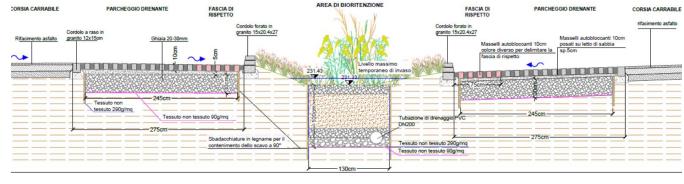
PARCO E BACINO DI DETENZIONE: STATO DI FATTO

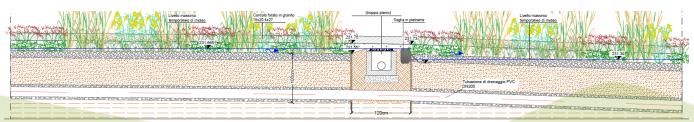


PARCO E BACINO DI DETENZIONE: IL PROGETTO

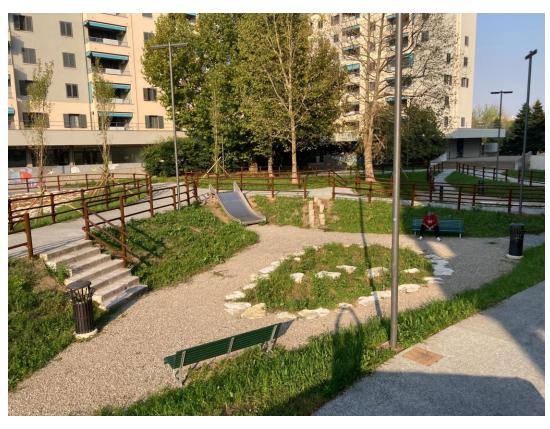
DE-IMPERMABILIZZAZIONE E RIGENERAZIONE URBANA A MEDA (MB)






AREA DI BIORITENZIONE IN PARCHEGGIO: STATO DI FATTO

AREA DI BIORITENZIONE IN PARCHEGGIO: IL PROGETTO



IN CONCLUSIONE....

- Occorre una strategia integrata che parte dalla pianificazione e arriva alla scelta della tipologia di intervento ottimale (SUDS, interventi green-gray, interventi gray)
- Gli allagamenti urbani non si possono eliminare per qualsiasi evento, ma se ne possono mitigare l'intensità e gli effetti negativi grazie a de-impermeabilizzazione e definizione di aree a minor domanda di sicurezza deputate ad accogliere acque meteoriche durante eventi intensi per poi tornare alle loro diverse funzioni. I SUDS rappresentano
- La città esiste già, quindi è necessario tenerne conto nella progettazione per mantenere le funzioni esistenti (multiscopo non significa escludere l'attuale funzione dell'area), o crearne di nuove ma sempre integrate nel contesto della singola area urbana. I SUDS si integrano nelle città esistenti migliorandole.
- La progettazione di un SUDS deve cercare di migliorare la città in termini di water quantity, water quality, Amenity Biodiversity
- Bisogna che gli interventi proposti diano un beneficio idraulico (water quantity) misurabile e che siano multi-obiettivo. Anche nella progettazione di interventi di drenaggio urbano sostenibile, è necessario che questo elemento sia tenuto in considerazione.

GRAZIE PER L'ATTENZIONE

Informazioni e contatti:

- ★ WISE ENGINEERING S.R.L.
- Sede: Via A. De Gasperi 85, 20017, Rho (MI)
- Email: balbo@wisebenefit.it
- PEC WISE ENGINEERING S.r.l.: wise.engineering@legalmail.it
- J Telefono: +39 02 49412944

